![]() ![]() |
统计机器学习
本书主要介绍统计机器学习框架,该框架以基于机器学习算法获得真实数据生成过程(DGP)概率分布的最佳近似为前提。统计机器学习框架由一组核心定理支撑,能够用来分析许多常见机器学习算法对DGP的渐近性。书中通过相关机器学习案例帮助学生理解框架中的核心定理。具体来说,本书分为四部分:第一部分通过实例介绍了机器学习算法概念和描述算法的数学工具;第二部分讨论了确定性学习机的渐近行为;第三部分讨论了随机推理机和随机学习机的渐近行为;第四部分关注的是机器学习算法的泛化性能表征问题。
你还可能感兴趣
我要评论
|