本书介绍了数学分析的基本概念、基本理论和方法,包括一元函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等。全书共分三册。本册内容包括实数与数列极限、函数与函数极限、函数的连续性、微分与导数、导数的应用、实数集的稠密性与完备性。书中列举了大量例题来说明相关定义、定理及方法,并提供了丰富的思考题和习题,便于教师教
本书是按照新形势下教材改革的精神,结合国家工科类本科数学课程教学基本要求,以及国家重点大学的教学层次要求,汲取国内外教材的长处编写而成,本书分上、下两册。上册内容包括函数与极限,导数与微分,导数的应用,不定积分,定积分,定积分的应用,空间解析几何与向量代数。内容与中学数学相衔接,满足“高等数学课程教学基本要求”,还考虑
本书共有12章,包括函数、极限与连续、导数与微分、导数应用、不定积分、定积分、矩阵、向量、方程组、事件及其概率、随机变量、随机变量的数字特征.每章开头有导读、末尾有相应内容的简史或著名数学家简介,每节配有习题,书末附有答案。
本书下册包含两章(第15及16章)和三个附录(附录H,I,J)。第15章讲授拉氏和哈氏理论,第16章介绍黑洞(热)力学,包括传统(稳态)黑洞热力学及其后续发展,特别是比较详细地讲解了(弱)孤立视界和动力学视界等重要概念,并对近代有关文献的许多公式给出了详细的推证,附录H讲授Noether定理的证明(包括用几何语言和坐标
流形上的特征值问题(英文版)
偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进
《集值极大极小定理与集值博弈问题》主要分为两部分内容:集值极大极小定理和集值博弈问题。《集值极大极小定理与集值博弈问题》分别在向量优化与集优化两种不同准则下,讨论集值极大极小定理,主要内容有集值极大极小定理与锥鞍点、向量集值极大极小问题、向量集值KyFan极大极小定理、非凸的集值极大极小定理与集值均衡问题、几类特殊的集
数学分析立体化教材是作者在华南师范大学讲授数学分析及相关课程20多年的经验基础上写成的,有一些独到见解与体会。全套书在可读性、系统性和逻辑性上各具特色,并将分层教学的理念贯穿其中。首先在可读性方面,对于重要概念,只给一种定义形式,其他的等价定义放在思考题或习题中,对定理尽量用朴素的方法证明,对书中的例题表达尽量详细,让
本书在给出半群和格的基础知识和基本理论后,有选择地介绍了π逆半群(包括逆半群)的π逆子半群格方面的若干**研究成果。全书共分七章。*章介绍了格、半群、拟周期半群和逆半群的基础知识和基本理论;第二章首先介绍了π逆半群的基本性质,然后利用这些性质研究了具有某些类型π逆子半群格的π逆半群的特性及结构;第二章介绍了具有某些类型
本书分两部分。*部分介绍代数的Hochschild同调与上同调,其中包括三类特殊Koszul代数的Hochschild同调和上同调群的计算,以及两类代数的Hochschild上同调环的结构刻画。第二部分介绍代数的模-相对Hochschild同调与上同调及形式光滑性问题,着重介绍儿类特殊构造下代数的模-相对Hochsch