凸分析的主要研究对象是欧氏空间中的凸集合和凸函数,以锥、次微分和对偶理论为核心,建立了优化问题的最优性条件,并构建了现代非光滑和变分分析的基础.本书共分三章:第1章主要介绍相关的基本概念和工具,包括欧氏空间、拓展实值函数、函数半连续性、包算子、仿射映射等;第2章聚焦于凸集和凸锥以及各自诱导的包算子,主要内容包括凸包、相
本书是河南省“十四五”普通高等教育规划教材,全书共三册,按三个学期设置教学,介绍了数学分析的基本内容.第一册内容主要包括数列的极限、函数的极限、函数连续性、函数的导数与微分、函数的微分中值定理、泰勒公式和洛必达法则.第二册内容主要包括不定积分、定积分、广义积分、数项级数、函数项级数、幂级数和傅里叶级数.第三册内容主要包
本书针对工程硕士研究生的特点和创新型人才培养的要求,将矩阵论、数值分析和规划数学中应用非常广泛的最优化问题按学生容易接受的内容体系进行编写.全书共12章,其内容依次为初等变换与线性方程组的直接解法、线性空间、赋范线性空间与内积空间、线性映射、矩阵的若尔当标准形与矩阵函数、线性方程组的求解方法、非线性方程(组)的解法、最
本书在Hopf代数表示范畴层面引入一些新的monoidal不变量,这些不变量包括表示范畴的Green环、Casimir数、高阶Frobenius-Schur指标、Grothendieck环、某种类型的多元齐次多项式等。著作主要研究这些不变量在Hopf代数表示理论中所发挥的作用,揭示这些不变量与Hopf代数表示范畴中其它
《几何原本》是古希腊数学家欧几里得的一部不朽之作,被誉为史上zui成功的教科书,牛顿、爱因斯坦、丘成桐等科学家对其推崇备至,曾国藩、徐光启、余世存等名人对其盛赞有加。 《几何原本》的最大成就及其伟大意义在于它用公理方法建立起演绎数学体系的最早典范,其对数学发展的影响超过了任何其他著作。 《几何原本》自问世之日起,在长达
本书重点论述微分几何与共轭…面原理在齿轮啮合传动与运动分析方面的应用。首先以矢量函数…线论与…面论为基础,拓展了密切…面、等距…面、…率并矢等内容,丰富了典型…线与…面的应用实例;然后概括了共轭…面运动的两类特征函数与特征矢量,围绕共轭…面的整体几何与微分几何论述了空间…面运动的形成原理、模型构建与分析方法;最后以弧齿
《线性代数习题详解与提高》是北京建筑大学数学系编写的《线性代数》(2019版)的配套教材。本书对《线性代数》各章知识进行了梳理和总结,包括知识脉络图、知识要点和学习要求;对各章的习题和复习题做了详尽的解答;同时,为满足学有余力的读者的需要,还补充了“常见题型”部分,其中不乏考研真题,这部分题目在难度和解题技巧方面都有进
本书由数学通俗文章和讲话的讲稿等组成,此外还有一篇关于数学史的翻译文章和一个座谈会实录.数学通俗文章的主题有:数学概述,数学的意义;对称;几何——从熟悉到陌生;基础数学的一些过去和现状;数学——简单与高深;朗兰兹纲领寻根之旅;黎曼猜想——引无数英雄竞折腰;简说代数;表示,随处可见;几何表示论;卡兹旦-路兹蒂格理论:起源
《近可积系统的轨道稳定性》研究近可积系统的轨道稳定性问题,包括KAM环面的存在性、有效稳定性和拟有效稳定性等问题.《近可积系统的轨道稳定性》涉猎了Hamilton系统、扭转映射、辛映射等通常形式和参数形式的多种近可积系统.从应用角度,《近可积系统的轨道稳定性》探讨了扰动氢原子的Hamilton系统和近可积小扭转映射的轨
本书是陈难先院士对于其科研生涯中主要的贡献——默比乌斯反演的应用的总结。但本书并没有局限于纯粹学术专著的风格,而是尽量写得通俗易懂,以激发读者对于这一美妙方法的兴趣。 20世纪80年代,人类进入信息时代,科学技术中的各种逆问题蓬勃兴起。作者运用默比乌斯反演方法使问题的解出现了新的面貌。在Nature杂志引发了整版评论。