泛函分析
本书介绍了等几何分析方法,它包括等几何有限元法、等几何边界元法以及等几何有限元-边界元耦合方法。本书分为9章。第1章为绪论,第2-4章介绍了等几何有限元法的基本理论及其在含贯穿裂纹的薄壳结构、含裂纹和孔洞缺陷的功能梯度薄壁结构和线性热-粘弹性问题中的应用,第5章介绍了瞬态热传导问题的等几何边界元法,第6和7章分别介绍了
《空间-时间-物质》是被誉为20世纪伟大的数学家之一的德国数学家赫尔曼·外尔(HermannWeyl,1885—1955)的名著《空间-时间-物质》(Raum,Zeit,Materie),是黎曼几何与广义相对论领域的著作。1916年到1917年,外尔在苏黎世联邦工学院讲授相对论课程时,力图把哲学思想、数学方法以及物理学
On Existence and Multiplicity of Solutions for Some Nonlinea
本书研究的内容为非经典扩散方程在时间依赖空间中的吸引子,受到时间依赖整体吸引子的一些研究成果的启发,我们首先研究了时间依赖整体吸引子和强吸引子的存在性,之后通过调整对时间依赖函数的假设,如重新设置其下界和单调性,得到了一些在时间依赖空间中关于拉回吸引子的存在性和正则性、以及拉回吸引子和整体吸引子的上半连续性的成果,它们
《计算复杂系统》应用智能计算的理论与方法,结合智能控制理论对工程系统与社会科学中普遍存在的非线性动力学与控制问题进行了详细阐述,介绍了目前在该领域的一些基本分析方法和计算技术,内容涉及复杂性与复杂系统、智能计算、复杂网络、多尺度分析、计算材料、计算经济、计算实验、非线性建筑、复杂交通工程管控、决策支持、管理与控制以及其
本书旨在向读者阐述涉及“小除数”问题的基本理论、典型方法和应用以及最新的研究成果。本书系统收录了作者在小除数理论和应用以及KAM方法的典型应用方面的研究成果。第一章,主要介绍出现小除数问题的三个重要的动力系统模型。第二章,主要介绍连分数理论和经典的小除数条件。第三章,主要介绍一维小除数理论在动力系统理论中的几个应用。第
矩阵半张量积是近二十年发展起来的一种新的矩阵理论。经典矩阵理论的最大弱点是其维数局限,这极大限制了矩阵方法的应用。矩阵半张量积是经典矩阵理论的发展,它克服了经典矩阵理论对维数的限制,因此,被称为跨越维数的矩阵理论。矩阵半张量积讲义的目的是对矩阵半张量积理论与应用做一个基础而全面的介绍,计划出五卷。卷一:矩阵半张量的基本
本书以环、半群、范畴等代数结构中的Moore-Penrose逆、群逆、Drazin逆、核逆、伪核逆为主线,介绍了这几类广义逆的代数特性(包括代数方程刻画、存在性准则、表达式等等),揭示了代数结构的性质和广义逆的性质之间的内在联系。从矩阵分解入手,介绍矩阵广义逆的基本性质,以此类比,延伸到环、半群中的元素以及范畴中的态射
《变分方法与非线性发展方程》讨论变分方法在非线性发展方程理论中的应用.非线性发展方程主要关心局部解、全局解的存在性以及孤立被解的稳定性等问题.利用变分方法我们可以寻找众多的非线性发展方程的稳态解,之后根据对应的守恒律可以得到系统的轨道稳定性和不稳定性。《变分方法与非线性发展方程》主要内容包括*优控制问题中的扩散方程、量