本书是在国家精品课程、国家精品资源共享课程和国家级一流本科课程“离散数学”的基础上,结合卓越工程师教育培养计划和新工科建设编写而成的。全书共10章,系统介绍了数理逻辑、集合与关系、图论,以及代数系统与布尔代数中的基本概念、算法、定理及其证明方法。本书不仅注重基本概念的描述,还特别注重阐述有关离散数学的证明方法及离散数学
本书从应用的角度介绍离散数学。全书共分6章,分别是命题逻辑、谓词逻辑、集合与关系、代数结构、图和有向图。全书体系严谨,内容讲解深入浅出,并配有大量与计算机科学相关的有实际背景的例题和习题。在每章后增加了上机作业,可增强学生对课堂教学内容的理解和掌握,提高学生的学习兴趣和动手能力。全书以二维码的形式提供了教学视频,有利于
积分论一直是分析学的核心领域,近年来产生的非可加积分、集值积分与模糊值积分理论发展迅速,且在信息论、控制论、数量经济、决策过程、人工智能和大数据等领域有着广泛的应用.本书系统介绍非可加积分、集值积分与模糊值积分领域的**理论成果,因为其涵盖了经典的Lebesgue积分,所以定名为“广义积分论”.内容有:单值积分,包括抽
本书研究无穷区间上常微分方程边值问题的非线性泛函分析理论,内容共七章,其中前两章系统介绍无穷边值问题、函数空间和非线性泛函理论的基础;第3—7章分别给出了五种方法研究二阶和高阶常微分方程、具有p-Laplace算子的微分方程、差分方程以及方程组的特征值问题、两点边值问题、多点边值问题、共振问题、周期解、次调和解和反周期
本书是根据近世代数教学大纲的要求编写的.全书分为4章:第1章讲基本概念,它是后面各章的基础;第2章介绍群的基本理论;第3章介绍环的基本理论;第4章专门讲整环里的因子分解.这次再版在总体框架不变的前提下对个别地方的表述作了修改,使其更加严谨通俗,同时增加了一些习题,以利于读者能更深入地理解近世代数的理论与思维方法.
偏微分方程是描述在变化中有守恒之物理世界诸多机制的重要手段。本书将围绕波动、热传导以及泊松方程三类最典型的二阶偏微分方程展开讨论,同时介绍特殊函数这一可用于求解偏微分方程的分析工具。本书旨在帮助读者初步形成综合运用偏微分方程分析解决物理问题的能力。
“Commoninvariantsubspacesandcompactnessconditions”一书主要总结了算子集合的不变子空间性质,以及类紧算元的相关结果。在算子理论中,我们把紧的拟幂零算子称为Volterra算子。由Volterra算子组成的集合亦称为Volterra集合,如Volterra半群,Volter
本书首先简要介绍了数理逻辑的发展、形式系统及一些预备知识,然后介绍了集合论,详细讲解了命题演算、谓词演算、可计算性理论和哥德尔不完全性定理,最后介绍了模型论的基础知识和方法。全书重点突出,论证详细,各部分内容配有典型的例子和习题,以便读者更好地理解、掌握相关知识。
本书致力于适应普通本科高校的数学建模教学,力求做到内容简明扼要、浅显易懂,让学生既学到基本的建模方法,又有扩展学习的空间。本书采用了目前比较流行的Python语言进行数值实验。全书主要内容包括插值与拟合、微分方程、图与网络优化、线性规划、非线性规划、数据的统计描述、统计分析、综合评价方法等。本书还提供所有例题的Pyth
本书主要研究数学分析中的微分与积分及相关的一些问题。内容包括一元函数微分学、一元函数微分法的应用、一元函数积分学和多元函数及其微分学等。本书在内容的安排上,深入浅出,表达清楚,可读性和系统性强。书中主要通过一些疑难解析和大量的典型例题来解析数学分析的内容和解题方法,并提供了一定数量的进阶练习题,便于教师在习题课中使用,