本书是“21世纪高职高专财经类专业核心课程教材”之一。本书主要介绍了珠算技术的主要方法、技巧等知识。本书主要介绍珠算技术方法和标准,含习题与训练项目,特别加入了心算技术的有关内容,这些都是财务会计和金融类专业的基本技能教学内容。经过多次修订,本书具有突出的职业性、实用性,可以作为高等职业院校珠算课程的教材,也可以作为在
《高职高等数学》是理工类专业大学公共必修基础课程。依据目前高职高专高等数学课程教学的基本要求,结合数学教学改革的实际情况,充分利用校级精品在线课程视频资源,拟编写一套紧密衔接高中阶段数学教学内容,符合高等职业教育数学课时较少、要求高的特点,配备足量的习题且解答详尽,融合在线课程资源的新形态高等数学教材。本书与《高职高等
本书是理工类专业大学公共必修基础课程。依据目前高职高专高等数学课程教学的基本要求,结合数学教学改革的实际情况,充分利用校级精品在线课程视频资源,拟编写一套紧密衔接高中阶段数学教学内容,符合高等职业教育数学课时较少、要求高的特点,配备足量的习题且解答详尽,融合在线课程资源的新形态高等数学教材。本书共分为8章,具体包括:第
本书全面系统地介绍了三类典型偏微分方程——波动方程、热传导方程和稳定场方程求解的谱元法。全书共分8章:第1章导出典型偏微分方程与定解条件;第2章介绍谱元法的基础知识;第3-5章介绍谱元法求解稳定场方程、热传导方程和波动方程;第6-8章讨论谱元法在地球物理正演中的应用,书中的实例均经过验证。
微分几何是由古典几何进入现代几何时基础课程。本书介绍大学微分几何课程的基本内容和理论,包括曲线和曲面的局部理论、曲面的内蕴几何、微分流形和专题选讲。全书简明顺畅,几何意义突出。特别是,本书习题均贯穿于正文中,是正文的理论延伸、具体示例或方法练习等。本书是为数学类专业基础较好的本科生(拔尖班、强基班、基地班等学生)编写的
本书是为高校数学类专业基础复分析课程编写的教材。全书共十一章,内容包括复数、点集拓扑基础、复函数、初等函数的几何性质、复积分、留数计算、调和函数、级数与乘积展开、共形映射与Dirichlet问题、解析延拓、椭圆函数。本书在选材上注重几何直观,在内容上力求全面,在拓扑基础方面有所加强。各章配有适量习题,不仅能促使学生熟练
代数学是研究数学基本问题的一门学问,本书“代数学(五)”是此系列五卷本“代数学”的第五卷,主要内容是有限群的表示理论。本书从“对称性”观点来理解有限群的表示,介绍了结合代数的结构、群代数的模,表示的基本概念、可约性、特征标与正交性、点群的表示、置换群的表示、实表示与复表示等重要内容。此外,本书还简单介绍了李群和李代数的
本书共7章,内容包括:函数、极限与连续,导数与微分,导数的应用,不定积分,定积分,微分方程,多元函数微积分。
本书为高等数学同步辅导书,配合同济大学数学科学学院编写的《高等数学》(第八版)教材使用,分为上、下两册。上册共七章,包括函数与极限、导数与微分等,从知识框架、重难点归纳、典型题精讲、教材习题全解、章节自测五个方面展开。
本书为高等数学同步辅导书,配合同济大学数学科学学院编写的《高等数学》(第八版)教材使用,分为上、下两册。下册共五章,包含向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数,从知识框架、重难点归纳、典型题精讲、教材习题全解、章节自测五个方面展开。