本书以通俗的文字深入浅出地介绍了加、减、乘、除等算术运算的速算方法,内容包括加减法速算、乘法一口清、两位数乘法速算、两位数乘多位数速算、多位数乘除法速算、九宫速算法。其中,乘法的剪刀积方法、梅花积方法、九宫速算法等内容是作者对速算理论的最新贡献。 本书实现了传统与创新融合、理论与实用兼顾、模块化与整体统一,可供中小学生
本书集周春荔教授毕生所学,将几何辅助线的添加方法和原理娓娓道来,充分体现"数学是智力的磨刀石,对于所有信奉教育的人而言,是一种不可缺少的思维训练”的育人作用。几何定理的证明,除少数简易的以外,非添加有用的辅助线,否则就无从着手。辅助线的作法,千变万化,没有一定的方法可以遵循,所以是证题时最困难的一件事。在普通几何书中,
本书的主要内容包括集合论、图论、近世代数和数理逻辑4部分,共12章。集合论的内容包括集合及其运算、映射、关系、无穷集合及其基数;图论的内容包括图的基本概念、树与平面图、有向图与有向树;近世代数的内容包括群、环与域、格与布尔代数;数理逻辑的内容包括命题逻辑和谓词逻辑。每节后都配有难度不同的习题供读者练习。本书的内容既保持
在这本引入入胜的科普经典中,著名英国数学家斯图尔特用清晰流畅、幽默风趣的语言阐明了群、集合、子集、拓扑、布尔代数等新数学的基本概念,他认为理解这些概念是把握数学真正本质的好途径。此外,作者还对函数、对称、公理学、计数、拓扑学、超空间、线性代数、实分析、概率论、计算机、现代数学的应用等主题作了发人深省的讨论。读者无需任何
数字贯穿了整个人类文明,可谓万物皆数。 从结绳记事开始,数字逐渐占领了人类生活的各个角落。数学是一切自然科学研究的基石。古往今来,声名赫赫的科学家们不断拓展数学的边界,试图从抽象运算中推导出真实世界的原理。 在本书中,彼得·希金斯通过讲解整数、分数、实数、复数等关键概念及其运算演变,为我们徐徐揭开数字世界
本书内容是几何分析领域优秀的科研工作者所写的综述性报告,文章汇报了几何分析领域的前沿热点。
数论是一门研究整数的历史悠久的学科,对数学思维的培养与训练有特殊的作用。初等数论是一门重要的基础课,本书将初等数论的核心重点知识前移,用浅显易懂的方式呈现;在逻辑与思维上,尽量由浅入深;重点介绍通识方法与技巧,淡化特殊技巧,注重思想方法的学习。《BR》全书分为六章,内容包括整除与同余、二次剩余与原根、不定方程、素数分布
本书主要从序与拓扑的交叉角度,拓展Domain理论的框架和应用范围,深入讨论sober空间、稳定紧空间与紧pospace、spectral空间与Priestley空间,系统地研究格序结构的关系表示问题,并给出关系表示理论在拓扑、Domain理论、格论中的一系列应用,尤其是一些经典拓扑问题的代数化处理新方法。由此建立了二
本书以组合数学中的存在问题和计数问题为主线展现理论之美,从满足一定条件的排列组合的存在性入手,介绍计数方法和计数工具,将组合数学运用到与生活密切相关的网络安全实例中,展现其应用之美。全书分为7章,介绍了排列组合概念与方法、特殊计数、母函数原理与应用、递推关系和容斥原理计数方法,以及鸽笼原理和Polya计数定理。本书将合
本书为首批***一流本科课程数学分析的配套教材,分上、下两册出版。本册是上册,共8章,主要讲述一元函数微积分的内容,包括集合与函数、数列极限、函数极限与连续函数、导数与微分、微分中值定理及应用、不定积分、定积分、反常积分。本书每节选用了适量有代表性和启发性的例题,还配有足够数量的习题,其中既有一般难度的题目,也有较难的