本书是在第一版的基础上,依据高等学校大学数学课程教学指导委员会制定的《大学数学课程教学基本要求》,结合应用型高校人才的培养目标和学习特点,并深度融合新工科理念修订而成的。 全书主要内容包括行列式,矩阵及其运算,向量组的线性相关性与矩阵的秩,线性方程组,特征值与特征向量,矩阵的对角化,二次型,线性空间与线性变换,每章后附
F.克莱因在他提出的著名的《埃尔朗根纲领》中,以变换群的观点综合了各种几何的不变量及其空间特性,以此为标准来分类,从而统一了几何学。
我们将在第一章介绍关于纽结与链环的基本概念,然 后在第二章用上面提到的初等讲法来介绍琼斯多项式,并在第三章用它来证明泰特关于交错纽结的猜测.这是本书的一条主线,这条主线可以叫作绳圈的拓扑学.
近年来,在图像处理与强度可调辐射疗法的实际应用背景下,分裂可行性问题成为近期非线性分析的研究热点之一。本专著从三个方面研究分裂可行性问题与广义分裂可行性问题(分裂公共不动点问题、分裂变分不等式问题和分裂公共零点问题)解的迭代逼近。主要体现在新算法设计、空间扩展和参数减弱限制条件等方面。对于丰富和扩展分裂可行性问题相关理
"本书内容由微分方程、多元微分学,多元函数积分、级数四个部分构成,涵盖了高等数学的基本理论和算法,章节内容设计由浅入深逐步递进。教材内容注重与相邻学科内容的衔接,同时注重与实际应用的结合。 高等数学(二)的内容:第7章为微分方程部分,包括微分方程的求解及其应用;第8章为多元微分学部分,包括多元函数的概念、偏导数的求导
"本书根据高等职业教育的教育理念,以职业能力为主线构建课程体系,突出职业教育的特点,由实际案例引入教学内容,激发学生学习兴趣,注重对学生数学素养、职业能力和应用能力的培养。特别在每个模块里编写了用数学软件MATLAB解决数学问题的内容,突破高职院校学生数学计算困难的瓶颈。 全书分为上、下两册共十个模块,上册内容包括:
李乔、李雨生所著的《拉姆塞理论入门和故事》为其中一册,主要介绍了拉姆塞定理、几个经典定理、图的拉姆塞理论、欧氏拉姆塞理论及拉姆塞理论的一些进展。
本书根据编者多年的教学实践与教改经验,结合教育部高教司最新颁布的本科非数学专业理工类、经济管理类《高等数学课程教学基本要求》、并结合全国研究生入学考试数学大纲及近年变化趋势编写而成. 全书分上、下册出版,本书为上册部分。上册包括与函数、极限与连续、导数与微分、微分中值定理和导数的应用、不定积分、定积分与定积分的应用、
本书根据考研数学的最新考试大纲编写,是作者多年来从事考研辅导教学的经验总结。本书主要针对考研数学(数学一)设计了强化练习,从考试内容、考试要求、知识结构、备考建议、知识点精讲等方面,帮助学生加深对知识点的理解,侧重单一知识点的精细化讲解和把握,目的是打牢基础;同时,从考试题型的角度,综合运用知识,考察知识点间的综合灵活