高温下的铁磁链方程--Landau-Lifshitz-Bloch 方程的分析与应用(英)
定 价:98 元
- 作者:郭柏灵,李巧欣,李方方,裴一潼,张颖,赵立臣
- 出版时间:2025/10/1
- ISBN:9787030835505
- 出 版 社:科学出版社
- 中图法分类:O482.52
- 页码:185
- 纸张:
- 版次:1
- 开本:B5
本书收集了与LLB模型有关的物理背景和研究成果,对LLB方程的弱解和光滑解,Maxwell-LLB方程的光滑解及其整体吸引子,具温度效应的LLB方程和非线性电子极化LLB方程方程的光滑解,随机和分数阶LLB的光滑解,多种广义LLB方程和LLB方程组的整体解,Maxwell-LLB方程的周期解等方面进行了深入、系统的研究,取得了一系列具有创新性的丰富的成果,并对各种最新研究成果给予了深入浅出的证明。
更多科学出版社服务,请扫码获取。
本科:复旦大学1958年9月—1963年1月 复旦大学 助教
1963年2月—1982年10月 第二机械工业部第九研究所 助理研究员
1982年11月—1987年10月 北京应用物理与计算数学研究所 副研究员
1987年10月—至今 北京应用物理与计算数学研究所 研究员非线性发展方程及其数值解、孤立子解以及无穷维动力系统等离子体物理某些非线性发展方程整体解及数值的研究,国防科工委科技进步一等奖;
中国光华科技二等奖;
无穷维动力系统的理论研究及其应用,国防科工委科技进步一等奖;
何梁何利基金科学与技术进步奖;1.曾任中国数学会理事,国家自然科学基金会数学评审组成员,北京市数学会常务理事、副理事长;
2.担任中南大学名誉教授、长江师范学院双聘院士、湖北文理学院“隆中学者”特聘教授、华南理工大学双聘院士、河南理工大学特聘教授、南宁师范大学特聘教授、广州大学数学与信息科学学院教授、广西壮族自治区主席院士顾问团成员、国家自然科学基金委重大项目咨询委员会委员;
3.美国“数学评论”评议员、美国数学会成员;
4.《偏微分方程杂志》《计算数学》《数学研究》《北京数学》等杂志编委、副主编
Contents
Preface
CHAPTER 1 The Physics Background of Landau–Lifshitz–Bloch Equation 1
1.1 Landau–Lifshitz Equation 1
1.2 Landau–Lifshitz–Bloch Equation 2
1.3 Landau–Lifshitz–Bloch Equation with Temperature Effect 4
CHAPTER 2 Smooth Solutions of the Landau–Lifshitz–Bloch Equation 7
2.1 Existence of Smooth Solutions in Two Dimensions 9
2.2 Existence of Smooth Solutions for Small Initial Values in Three Dimensions 14
2.3 Uniqueness of Smooth Solutions 16
CHAPTER 3 The Initial-Boundary Value Problem of Landau–Lifshitz Equation 19
3.1 Landau–Lifshitz–Bloch–Maxwell Equation 19
3.1.1 Approximate Solutions and a Priori Estimates 22
3.2 The Existence of Generalized Solutions 28
3.3 Regularity and Global Smooth Solutions 34
3.3.1 In the Case of d = 2 34
3.3.2 In the Case of d = 3 43
CHAPTER 4 Landau–Lifshitz–Bloch–Maxwell Equations with Temperature Effect 49
4.1 The System with Temperature Effect 49
4.2 The Existence of Global Weak Solution 51
4.3 The Existence of Global Smooth Solution 59
4.4 The Uniqueness of Global Smooth Solution 64
CHAPTER 5 The Periodic Initial Value Problem for the High-Dimensional Generalized Landau–Lifshitz–Bloch–Maxwell Equations 67
5.1 The Periodic Initial Value Problem for the Landau–Lifshitz–Bloch–Maxwell Equations 67
5.2 The Approximate Solution to the Periodic Initial Value Problem 68
5.3 The Estimation of the Approximate Solution 69
5.4 Existence of Global Weak Solutions 73
5.5 The Solution to the Initial Value Problem of the High-Dimensional Generalized Landau–Lifshitz–Bloch Equation 74
5.5.1 The Approximate Solutions are Uniformly Bounded and Convergent 75
5.5.2 The Global Weak Solution for an Infinitely Long Cylinder 77
5.5.3 Uniqueness of Smooth Solutions 78
CHAPTER 6 Weak and Strong Solutions to Landau–Lifshitz–Bloch–Maxwell Equations with Polarization 85
6.1 Physical Background 85
6.2 Solutions to the Viscosity Problem 89
6.2.1 Global Solutions to the ODE (6.2.24)–(6.2.32) 91
6.2.2 Existence of Weak Solution for the Viscosity Problem 99
6.3 A Priori Estimates Uniform in ε and Existence of Global Weak Solutions 102
6.4 Global Smooth Solution for Problem (6.1.1)–(6.1.4) 106
CHAPTER 7 Smooth Solutions of the Fractional Order Landau–Lifshitz–Bloch Equation 115
7.1 A Priori Estimates for Local Smooth Solutions 116
7.2 Proof of Uniqueness of Solutions 121
CHAPTER 8 Well-Posedness and Ergodicity of Solutions for Stochastic Landau–Lifshitz–Bloch Equations 123
8.1 Smooth Solutions of Stochastic Landau–Lifshitz–Bloch Equation 123
8.1.1 A Priori Estimates of Solutions 126
8.1.2 The Uniqueness of the Path 129
8.2 Ergodicity of Stochastic Landau–Lifshitz–Bloch Equation 131
8.2.1 Relevant Background 131
8.2.2 The Main Results of This Section 135
8.3 The Existence of an Invariant Measurable Set 138
8.3.1 Energy Estimates 138
8.3.2 The Pathwise Uniqueness 141
8.3.3 Higher Regularity 143
8.3.4 Invariant Measure 148
8.4 Ergodicity: The Uniqueness of the Invariant Measure Set 153
8.4.1 Asymptotic Strong Feller Property 153
8.4.2 The Compact Property of Invariant Measures 160
8.4.3 Proof of the Gradient Flow Equation 163
CHAPTER 9 The Initial Value Problem of the Landau–Lifshitz–Bloch Equation Coupled with Spin Polarization Transport Equation 167
9.1 Landau–Lifshitz–Bloch Equation Coupled with Spin Polarization Transport Equation 167
9.2 Existence of Global Smooth Solutions 169
9.3 Uniqueness for the Global Smooth Solution 180
Bibliography 183